Maxwell-Boltzmann Distribution (Thermal Physics)

e-content for B.Sc Physics (General and Subsidiary Course)

B.Sc Part-I Paper-I

Dr. Ayan Mukherjee, Assistant Professor, Department of Physics, Ram Ratan Singh College, Mokama. Patliputra University, Patna

Maxwell-Boltzmann Distribution

The Probability Distribution function for an ideal (classical) gas is called the Maxwell-Boltzmann distribution function. It specifies the probability that a single gas particle from a large distribution of particles in equilibrium at some temperature T has a speed v or a momentum p or a kinetic energy E.

There are many ways to derive the Maxwell-Boltzmann (M-B) Distribution Law:

> Calculate the number of particles with velocities between v and v+dv as a function of energy E. Maxwell velocity distribution results.

 \geq Enumerate all possible ways that N particles can be distributed in energy. Use variational calculus to find the distribution law (number of particles vs. energy) that maximizes the system weight W. The M-B Distribution results (see Appendix GG).

> Maximize the Entropy $S=k_B \ln W$. The M-B Law results.

> Use microscopic reversibility arguments.

The Distribution of Molecular Speeds in a Gas first derived by J.C. Maxwell in 1852

$$P(v)dv = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T} dv = \frac{n(v)}{N} dv$$

Normalized

•
$$v \equiv \sqrt{v_x^2 + v_y^2 + v_z^2}$$

- Probability that molecule has speed v $\propto e^{-mv^2/2k}{}_B{}^T$
- \cdot Number of molecules with speed v \propto v^2
- Note that P(v) is a continuous <u>probability</u> distribution function
- Note that only v^2 appears, not the components of velocity

 Connects macroscopic Thermodynamic properties with microscopic models

Maxwell <u>Speed</u> Distribution Function

Note asymmetry - there are more ways to get a large speed than a small one.

The inherent asymmetry gives rise to different values for v_{max}, v_{av}, and v_{rms}.

Check out:

7)

http://www.chm.davidson.edu/ChemistryAppl ets/KineticMolecularTheory/Maxwell.html

Shaded <u>area</u> represents probability tha molecule will have a speed v ± dv/2

On earth, T=300K, atmosphere is mostly N₂. Mass of N₂ molecule is 4.7×10^{-26} kg. What is v_{avg}?

$$v_{avg} = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8(1.38 \times 10^{-23})(300)}{3.14(4.7 \times 10^{-26})}} = 474 \text{ m/s}$$

Most Probable Speed

$$(v_{avg})^{2} \equiv \int_{0}^{\infty} v^{2} P(v) dv = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_{B}T}\right)^{3/2} \int_{0}^{\infty} v^{4} e^{-m^{2}/2k_{B}T} dv$$
$$\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}; \quad n=2; a=\frac{m}{2k_{B}T}$$
$$(v_{avg})^{2} = \frac{3k_{B}T}{m}$$
$$v_{ms} = \sqrt{(v_{avg})^{2}} = \sqrt{\frac{3k_{B}T}{m}}$$
$$\frac{1}{2}mv_{ms}^{2} = \frac{1}{2}m \cdot \frac{3k_{B}T}{m} = \frac{3}{2}k_{B}T \quad \text{(equipartition theorem)}$$

What is the probability that a gas atom with mass m has a momentum between p and p+dp at temperature T?

$$P(v)dv = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_BT}\right)^{3/2} v^2 e^{-mv^2/2k_BT} dv = 4\pi v^2 \left(\frac{m}{2\pi k_BT}\right)^{3/2} e^{-mv^2/2k_BT} dv$$
$$\frac{1}{2}mv^2 = \frac{p^2}{2m} \implies mvdv = \frac{pdp}{m} \implies dv = \frac{1}{mv} \frac{pdp}{m} = \frac{dp}{m}$$
$$= \frac{4\pi m^2 v^2}{m^2} \left(\frac{m}{2\pi k_BT}\right)^{3/2} e^{-p^2/2mk_BT} \frac{dp}{m}$$
$$= \frac{4\pi p^2}{m^3} \left(\frac{m}{2\pi k_BT}\right)^{3/2} e^{-p^2/2mk_BT} dp = 4\pi p^2 \left(\frac{1}{m^2} \frac{m}{2\pi k_BT}\right)^{3/2} e^{-p^2/2mk_BT} dp$$

$$P(p)dp = \frac{4\pi p^2}{\left(2\pi m k_B T\right)^{3/2}} e^{-p^2/2m k_B T} dp = \frac{n(p)}{N} dp$$

What is the probability that a gas atom with mass m has an energy between E and E+dE at temperature T?

Change Variables:

$$E = \frac{p^2}{2m}$$

$$p^2 = 2mE$$

$$2p \, dp = 2m \, dE$$

$$p^2 dp = p \cdot p dp = \sqrt{2mE} \cdot m dE$$

$$= \frac{1}{2} (2m)^{3/2} E^{1/2} dE$$

$$\frac{n(p)}{N}dp = \frac{4\pi p^2}{\left(2\pi mk_B T\right)^{3/2}} e^{-p^2/2mk_B T} dp$$

$$= \frac{4\pi}{\left(2\pi mk_B T\right)^{3/2}} e^{-p^2/2mk_B T} p^2 dp$$

$$= \frac{4\pi}{\left(2\pi mk_B T\right)^{3/2}} e^{-E/k_B T} \cdot \frac{1}{2} \left(2m\right)^{3/2} E^{1/2} dE$$

$$P(E)dE \equiv \frac{n(E)}{N} dE = \frac{2}{\sqrt{\pi}} \frac{E^{1/2}}{\left(k_B T\right)^{3/2}} e^{-E/k_B T} dE$$

What is the Average Energy of Gas Atom at Temperature T? $E_{avg} = \int_{0}^{\infty} E \times P(E) dE = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} E \frac{E^{1/2}}{(k_{\rm p}T)^{3/2}} e^{-E/k_{\rm p}T} dE$ $=\frac{2}{\sqrt{\pi}}\frac{1}{(k_{\rm p}T)^{3/2}}\int_{0}^{3/2}E^{3/2}e^{-E/k_{\rm B}T}dE$ $a = \frac{1}{k_B T} \implies \int_{0}^{\infty} E^{3/2} e^{-E/k_B T} dE = \int_{0}^{\infty} E^n e^{-aE} dE; \quad n = 3/2$ $=\frac{\Gamma(n+1)}{a^{n+1}} = \frac{3\sqrt{\pi}}{4} \frac{1}{\left[\frac{1}{k_{B}T}\right]^{5/2}} = \frac{3\sqrt{\pi}}{4} \left(k_{B}T\right)^{5/2}$ 2 1 $3\sqrt{\pi}$ 5/ 6

$$E_{avg} = \frac{2}{\sqrt{\pi}} \frac{1}{\left(k_{B}T\right)^{3/2}} \frac{3\sqrt{\pi}}{4} \left(k_{B}T\right)^{5/2} = \frac{6}{4} k_{B}T = \frac{3}{2} k_{B}T$$

Probability of finding gas atom with energy between E and E+dE

Experimental Verification of Maxwellian Distribution Function

APPLICATION

The Maxwell speed distribution serves as the basic input for computer calculations of molecular dynamic (MD) simulations of gas flow, gas cooling, gas heating, flames, etc.

Summary

Velocity distribution

$$P(v)dv = \frac{n(v)}{N}dv = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T} dv$$

Momentum distribution

$$P(p)dp = \frac{n(p)}{N}dp = \frac{4\pi p^2}{\left(2\pi mk_B T\right)^{3/2}}e^{-p^2/2mk_B T}dp$$

Energy distribution

$$P(E)dE = \frac{n(E)}{N}dE = \frac{2}{\sqrt{\pi}} \frac{E^{1/2}}{\left(k_B T\right)^{3/2}} e^{-E/k_B T} dE$$